
Adventures & Explorations: LC

Guideline

• https://www.teamblind.com/post/New-Year-Gift---Curated-List-of-Top-75-LeetCode-Questions-to-Save-
Your-Time-OaM1orEU

• Steps:
• Keep calm and patient
• Read question carefully and understand requirements fully: 5-10 mins
• Set out strategy and get confirmation
• Code main logic and handle edge cases (don’t hope for luck)

• Good advice/watching: https://www.youtube.com/c/NeetCode https://neetcode.io/

• udemy course:

https://www.udemy.com/course/datastructurescncpp/?referralCode=BD2EF8E61A98AB5E011D

https://www.teamblind.com/post/New-Year-Gift---Curated-List-of-Top-75-LeetCode-Questions-to-Save-Your-Time-OaM1orEU
https://www.teamblind.com/post/New-Year-Gift---Curated-List-of-Top-75-LeetCode-Questions-to-Save-Your-Time-OaM1orEU

Key steps:

•#1: Read Q clearly and understand requirements exactly, ask for
clarification as needed, figure which category and which what data
structure.

•#2: Discuss and confirm strategy

•#3: Code main logic first, and try to cover edge cases

•#4: don’t hope for luck that it works magically, make sure/ understand
every step clearly.

•#5: Correct/Improve as it runs test cases

C++ STL: unordered_map
#include <unordered_map>

unordered_map<string, int> umap;

unordered_map<string, int>::iterator itr;

pair<string, int> elem;

umap[“test1”] = 1; umap[“test2”] = 2;

elem = make_pair(“test3”, 199); umap.insert(elem); // add

itr = umap.find(“mykey”); if (itr != umap.end()) printf(“found mykey”); //look up

for (itr =umap.begin(); itr != umap.end(); itr++) { // iterate thru for (auto kv: umap) kv.first , kv.second

 printf(“key is %s , val is %d \n”, itr->first, itr->second);

umap.erase(“my key”); umap.erase(umap.begin());

Umap.count(“my key”); return zero if not found;

umap.size(); // return number of elements in the map

Umap.empty() ;//tell if there is anything

C++ STL unordered_set

#include <unordered_set>

unordered_set<string> set1;

unordered_set<string>::iterator itr1;

unordered_set<int> set2;

set1.insert(“hello”); set1.insert(“world”); // add

if (set1.find(“myname”) != set1.end()) { // found it … } // look up

for (auto itr = set1.begin(); itr != set1.end(); itr++) { //iterate

printf(“%s”, *itr);

}

set2.insert(10); set2.insert(20); set2.erase(20); set2.erase(set2.find(10));

set2.count(key) => 0 or 1; set2.size() how many elements?

if (set1.empty()) { // nothing inside …}

C++ STL Stack and Queue

#include <stack>
stack<int> st;
st.push(10); st.push(20); st.push(30);
while (!st.empty()) { printf(“%d”, st.top()); st.pop();}
st.size();

#include <queue>
queue<int> q;
q.push(100); q.push(200); q.push(300);
while (!q.empty()) { printf(“%d, ”, q.front()); q.pop();}
q.size();

C++ STL Vector: used as ArrayList in Java
#include <vector>

vector<int> g1;

for (int i = 1; i <= 10; i++) g1.push_back(i * 10);

cout << "\n Reference operator [g] : g1[2] = " << g1[2];

cout << "\n Using at : g1.at(4) = " << g1.at(4);

cout << "\nfront() : g1.front() = " << g1.front();

cout << "\nback() : g1.back() = " << g1.back();

 int* pos = g1.data(); // pointer to the first element

 g1.push_back(15); g1.pop_back();

g1.insert(g1.begin(), 100); g1.insert(g1.begin()+3, 300);

g1.erase(g1.begin() +3) ; //erase

int index = find(g1.begin(), g1.end(), key) – g1.begin();

#include <bits/stdc++.h>

vector<int> v1 { 1, 20, 3, 40, 5, 60};

sort(v1.begin(), v1.end(), less<int>()); // less is default { 1,3,5,20, 40, 60}

C++ STL string class

#include <string>

std::string s = "Hello";

std::string greet = s + " World"; //concatenation easy!

str.push_back('s’); str.length(); str.at(i) is same as str[i]

to_string(123); // converte integer to string

I = stoi(“123”); // return interger 123;

str.find(subStr,0) == 0 => str is started with subStr

str.push_back(‘c’);

string::append (size_type num, char c)

str.substr(pos, len);

const char *cp = str.c_str();

C++ STD priority_queue: min heap, adjust on the
fly based on new value pq.push(), pq.pop()

•#include <queue>

•priority_queue<int, vector<int>, Cmp> pq;
// without Cmp, big num# first pop(), Cmp=less<int>, called Max heap

•Comparator:
class Cmp {
 public:
 bool operator()(int i1, int i2) {
 return i1 > i2 ; //pq.top(): will be smallest number, min heap
}

•priority_queue<int, vector<int>, greater<int>> min_hep;

Binary search in vector

Return 3

Return 6

LC String#1: 3. Longest Substring Without Repeating Characters

• Scan thru string, push each one into
“set” named as “seen” if not seen, c++
• If it is seen before, reset count “c”,

and clear “seen”, search back until
current char is hit(where is l is adjusted to)
add all back into “seen”

i

unordered_set

xx a b c1 32 4 9 8 7 6 9 x

LC String#2: two pionters/
Caterpillar algorithm
424. Longest Repeating Character with K Replacement

• Use Sliding windows: l=0, r=0->L

• Use a counters[26] array to count each
inside window’s letters frequency when
l/r is advanced

• Inside a sliding window, find the max_freq
letter and its counter, window width
(w=r-l+1), w– max_freq <= k, advance r,
other wise advance l

r

l

LC string#3: two pionters/
Caterpillar algorithm
76. Minimum Window Substring: from S including T

• Sliding window: expand R to
cover T, write down W

•Advance L until not cover T,
write down smaller W,

•Go back to first step until
reach the end of string.

LC string#4: 242. Valid Anagram: s = "anagram", t = "nagaram“ => true

An Anagram is a word or phrase formed by rearranging the letters of a
different word or phrase, typically using all the original letters exactly once.

LC string#5: 49. Group Anagrams:

•Character counters: for each
string vector<int> c(26,0)

•Visited[] Boolean to speed up

• Scan thru strs and counters[]
vector compare: counters[i] ==
counters[j]

LC string#6: 20. Valid Parentheses:

•Use stack: opening one,
push, closing one pop and
compare.

LC string#7: 125. Valid Palindrome:

LC string#8: 5. Longest Palindromic
substring:

i

Expand with I as center “odd”

Expand with i and i+1 as “even”
take longer one , record it along the way
to get len, pos = i-(len-1)/2

LC string#9: 647: Palindromic
substring:

i

Expand with I as center “odd”

Expand with i and i+1 as “even”

LC string#10: 271: Encode and Decode strings:

LC string#11: 13. Roman to Integer: 12. Integer to Roman

LC tree#1: 104. Maximum Depth of Binary Tree:

Use Q to do a level traversal and
Counting levels

LC tree#2: 100. Same Tree:

Do a DFS using stack for each tree, for absent node,
Add a dummy node with INT_MAX as flag, which
should do nothing except add INT_MAX into vector
after it is popped out from stack

LC tree#3: 226. Invert Binary Tree:

Exchange left with right node
Do recursion for left and right.

LC tree#4.1: 102. Binary Tree Level Order Traversal:

Using Q to do level traversal
Check Q size in the beginning of loop,
which is number of nodes in that level.

LC string#4.2: 144. Binary Tree preOrder Traversal:

DFS using stack is cleanest!

LC string#4.3: 94. Binary Tree Level InOrder Traversal:

LC string#4.4: 102. Binary Tree PostOrder
Traversal:

LC tree#5: 124. Binary Tree Maximum Path Sum(HARD):

Return gain: 50

See what if we split path here(60)

10 20

30-10

Return -10, but discarded

11

LC tree#6:
572. Subtree of Another Tree:

• Generate list of nodes
starting from root

• Using each node to do
same tree checking

• Same tree check using
traversal to generate
vector<int> to compare.

LC tree#7: 105. Construct Binary Tree from Preorder and Inorder Traversal:

preorder

[1, 2, 3, 4, 5, 6, 7]

inorder

[3, 2, 4, 1, 6, 5, 7]

R
o

o
t

Pivo
t_i

nPivo
t_p

r
e #1 find

#2 assign

l_pre_ r_pre_ r_in_l_in_

Given peorder and inorder, this precisesly define a tree
First value from preorder is ROOT, which can be used
To find the partition of LEFT and RIGHT!
If only preorder/inorder given, unless it is a full balanced tree
If postorder is given instead of preorder, find root using last!

Time & Space: O(n)

#2

#1

LC tree#8: 226. serialize and deserialize binary tree:

Use simple recursion/dfs to do preorder traversal
Using 9999 as NULL node.
Processing serialized string into vector<int> and use
Recursion to deserialize tree node.
Use variable “pos” to track position.

LC tree#9: 98. Validate Binary Search Tree:

- Use int64_t LOW_INF = (int64_t)INT_MIN-1
- Use int64_t HIGH_INF = (int64_t)INT_MAX+1
- To check left node, need pass down current

node value as HIGH
- To check right node, need pass down current

node value as LOW
- If there is any false return, return back all the

way.

LC tree#10: 230. Kth Smallest Element in a BST:

BST inorder traversal will give list of
Value in ascending order.

LC tree#11: 235. Lowest Common Ancestor of a Binary Search Tree:
• Find p in BST into vector<int>
• Find q in BST into unordered_map<int, TreeNode*>

236. Lowest Common Ancestor of a Binary Tree

LC tree#12: 208. Implement Trie (Prefix Tree)

a b c y z

a b c y z

a b c y z

Insert(“boy”)
ROOT

a b c y z

endOfWord = true

LC tree#13: 211. Design Add and Search Words Data Structure:
(essential trie)

LC tree#14: 212. Word Search II: (HARD)

LC Array#1: 1. Two Sum (easy)
Using unordered_map<int, int> to record
Index and value for search: O(n)

• a

LC Array#2: 121. Best Time to Buy and Sell Stock (I), only one transaction
122: ((II) allow to buy and sell same day, no limit of transactions

• Scan thru list, use hashSet to record
if not seen

LC Array#3: 217. Contains Duplicate (easy) 219: Contains Duplicate II

LC Array#4: 238. Product of Array Except Self

• One pass starting from beginning to make LEFT product
• Another pass starting from end to make RIGHT product

• Use two variables: curSum,
maxSum

• Reset to curSum back to zero if
it is negative

LC Array#5: 53. Maximum Subarray

• Use two variables: maxRes, product

• Do product from left to right, track
maxRes, if product becomes 0, reset to
1

• Do product from right to left, track
maxRes, if product becomes 0, reset to
1

LC Array#6: 152. Maximum Product Subarray

Binary search: three forms

int

• Special handling when r==l and r-l ==1 inside loop

• Special handling when nums[0] is minmum

LC Array#7: 153. Find Minimum in Rotated Sorted Array in O(log n) time.

m

m’

LC Array#7.1: 162. Find Peak Element in O(log n) time.

LC Array#8: 33. Search in Rotated Sorted Array using O(log N)

• If the array size is 1, return result
• If array is fully sorted, do binary search
• Otherwise find pivot, then decide which segment

do perform binary search.

LC Array#9: 15. 3Sum.

• Sort array
• Go thru for i, target is –nums[i]
• Using two pointers between i+1 to size()-1 to

find other two numbers
• O(n*n)

LC Array#10: 11. Container With Most Water.

L R
Move lower

LC#528 PrefixSum

LC BITS#1: 371. Sum of Two Integers.

• (A & B) << 1 => carry, A^B => answer
• Use long mask=0xFFFF,FFFF

LC BITS#2: 268. Missing Number.

• (A & B) << 1 => carry, A^B => answer

LC BITS#3: 190. Reverse Bits.

• a

LC BITS#4: counting 1 bit of an interger.

•__builtin_popcount(): count number of 1 bit, leverage “popcnt”
instruction

•__builtin_clz(): count leading zero, “lea” instruction

•__builtin_ctz(): count trailing zero, “tzcnt” instruction

•__builtin_parity(): parity check

while (n) { counter++; n &=(n-1);}
__builtin_popcount(n);

LC BITS#5: check if a number is power of 4.

• Check it has only one bit and bit location is
0x0101, 0101, 0101, 0101,0101,0101,0101,0101

• If it is power of 8, which is (2*2*2)N, bit
location:
0x0100,1001,0010,0100,1001,0010,0100,1001
0x49249249

LC INTERVAL#1: 57. Insert Interval.

• Given interval list is in ascending order
• Insert newInterval into given list in ascending

order
• Merge all intervals in the list using STACK

LC INTERVAL#2: 56. Merge Intervals.

• First sort intervals by using start value in
ascending order

• Use stack to merge any overlapped intervals

LC INTERVAL#3: 435. Non-overlapping Intervals.

• Sort all interval lists in ascending order
• Go thru interval list, there are three cases below:

Given an array of intervals intervals where intervals[i] = [starti, endi],
return the minimum number of intervals you need to remove to make
the rest of the intervals non-overlapping.

i
i+1

i
i+1

i

i+1

Case#1: non overlap
Do nothing

Case#2: remove
 i+1 since it covers more

Case#3: remove
 i since it covers more

LC INTERVAL#4: 252. Meeting Rooms.

• Sort interval by starting time in
ascending order

• Check if there is any overlap

Given an array of meeting time intervals where intervals[i] = [starti, endi],
determine if a person could attend all meetings.

LC INTERVAL#5: 253: Meeting Rooms II.

• Merge all starting time and ending time into one
single vector, but ending time as negative value

• Sort vector using absolute value, if it is equal,
negative first

• Go thru vector list, see positive time, increase 1,
• See negative time, decrease one.
• Record the max rooms

Given an array of meeting time intervals intervals where intervals[i] = [starti, endi],
return the minimum number of conference rooms required.

LC LinkedList#1: 206. Reverse Linked List

prev cur

LC LinkedList#2: 141. Linked List Cycle

• Use two pointers: s1 move with one step, s2
move two steps

• If there is loop, s1 and s2 will never NULL and
will be s1==s2 eventually.

• Or use hashSet “seen”

LC LinkedList#3: 21. Merge Two Sorted Lists.

• Use “cur” to hold current latest merged node
• Use “head” to hold return value
• Compare l1 and l2, advance the smaller value

pointer
• If one becomes NULL, simply connect the other

remaining

LC LinkedList#4: 23. Merge k Sorted Lists.(HARD)

• Create a miniHeap using priority_queue
(or simply use vector sorting)

• Traversal all K lists, add all nodes into minheap
• Pop minheap node one by one and form a

new list to return

LC LinkedList#5: 19. Remove Nth Node From End of List.

• Use two pointers: s2 is N step ahead of s1
• When s2 becomes NULL, S1 is the node to be

removed
• Use “prev” hold node before s1

prev s1 s2

LC LinkedList#6: 143. Reorder List.

• Push all ListNode into vector list
• Take out node from vector as required to form

a new list.

LC Matrix#1: 73. Set Matrix Zeroes.

• Scan thru matrix to mark down rows and
columns (into hashset) to be set to zero

• Second time go thru matrix again and check
hashSets , either r or c in the its set, set matrix
cell to be zero

LC Matrix#2: 54. Spiral Matrix.

• Set up four directions: L->R, U->D,
R->L, D->U with offset

• Starts with [0][0], each visited node
filled with INT_MAX

• When we move node, change
direction when either reach out of
boundary or VISTED node

LC Matrix#3: 48. Rotate Image.

• Flip value diagnose
• Reverse each row for clockwise
• (Reverse each column for counter-clockwise)

You are given an n x n 2D matrix representing an image, rotate
the image by 90 degrees (clockwise).

LC Matrix#4: 79. Word Search. • Key points:

LC Matrix#5: TBA.

• (A & B) << 1 => carry, A^B => answer

LC DP#1: 70. Climbing Stairs.

• F(n) = F(n-1) + F(n-2) with F(1) = 1, F(2) = 2

LC DP#2: 322. Coin change.

• for each amount, check for each coin
• since coin is always positive, if substract coin[i]

is positive, we use it as index to get a result from
that amount, plus 1 (current coin)

• we do for all coins to find the mini number

• Same nature of problem is perfect square
LC#279, which is number of [1, 4, 9, 16…]

0 1 1 amount

amount0 1 2 3

2

4 5 6

12 2

i

Min(1+result[Index= (i – coins[j])])

vector<int> result

LC DP#3: 300. Longest Increasing Subsequence(LIS) of given array.

• Start from beginning, for each position, check all
values before me

• If it is smaller than me, take its result +1
• Keep max value as result
• If it is Longest Decreasing Subsequence: starting

from the end.

LC DP#4: 1143. Longest Common Sequence(LCS) of two strings.

• Use recursion: straightforward, but it takes
much more time O(2 power min(N, M))

• Basically below plus memo:
if (text1.at(0) == text2.at(0))
 return 1 + LCS(text1.substr(1), text2.substr(1);
else
 return (max(LCS(text1, text2.substr(1)),
 LCS(text1.substr(1), text2)));

• Use dp approach: it is O(m*n)

A B C K O K G E

A
 C

 G
 K L O

E

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1111111
1

1
1

1

1
1

1

1+

max

LC DP#5: 139. word break: given sentence and word dictionary, tell if it can be
break using word from dictionary. • std::string::find(substr, pos): find first occurrence substr starting index of pos

• std::string::rfind(substr, pos): find last occurrence substr starting from pos
• Std::string::find_first_of(char c, int pos)

• Go thru given dictionary, for each word, use s.find(word, 0) to see if given string
starts with word, if yes, recursive call of substring (after remove word)

• Use memo to improve performance

LC DP#6.0 permutation

LC DP#6: 39. combination sum I

• Numbers are distinct
• backtrack allow same number to be re-used

Allow same number to be re-used

LC DP#6: 40. combination sum I I

• Values are random, could duplicate
• Sort them in ascending order
• each occurrence of number is used only once
• Skip the following numbers with same value

LC DP#6: 216. combination sum III

• simpliedfied version of II

LC DP#6: 377. combination sum IV

• backtrack with memo of pos+target

LC DP#7: 198. Rob house: Given an integer array nums representing the amount of money of each
house, return the maximum amount of money you can rob tonight without alerting the police.

• Since we don’t know what is ahead to make it
maximum, we start from the end: last one is it
self, last second one is if it is greater last, then it
is self, otherwise would be last one

• For any given house position “index”, compare
“its value + next_next” with “next”, take the
bigger value

result

nums

max

i i+1 i+2

max(nums[i]+result[i+2], result[i+1])

initialization

LC DP#8: 91. decode way. 226 => BBF, BZ, VF
• Check special cases:

• end of string: good (return 1)
• Starts with 0, can’t decode
• One digit other than 0, good (return 1)

• Check memo cache, if it exists, return result
• Otherwise try to explore with one digit and two

digits if possible

2263458

2263458 2263458

2263458 2263458 22634582263458

2263458 2263458 2263458 2263458

+

+ +

++

63>26

34>26

LC DP#9: 62. unique paths/grid walk

• Res [m,n] = res[m-1, n] + res[m, n-1]
• Use a unordered_map<string, int> as memo
• Key is “ “r”===“c”

LC DP#10: 55. Jump Game.

i + nums[i]

TTT F T

3

If any is TRUE,
Set I to TRUE

T

LC DP#11: 45. Jump Game II.

i + nums[i]

0xx y z

3

Pick smallest,
Plus 1, Set to I
V=min(x,y,..z)+1

v

LC DP#12: 1306. Jump Game III

• Recursive call forward and backward
if it inbound

• Use a visited map, if reach visited pos,
loop detected, NOT possible

LC DP#13: 22: Generate parentheses

(

((()

((((()

((()

((())

((()))

(()((())

(()()

(()())

(())(

(())()

()(

()((()()

()(()

()(())

()()(

()()()

Graph

LC Graph#1: 133. clone graph. • Use BFS (i.e. use Q) to traversal Graph
with help of unordered_set<int>

• Create a unordered_map<int, Node*>
to track all created cloned Node, key
is node#

• When traverse a node,
• check cloned node in map, if it

doesn’t exist, create it.
• find its all neighbor nodes, check

if its cloned node is in map, if not
created,

• Add all cloned neighbors under
cloned node

LC Graph#2: 207. Course Schedule.

• Go thru given pre-requisites to establish preq_list
unordered_map<int, vector<int>>: key is course#,
value is its pre_requsite vector<int>

• Init state for each course to INIT
• Go thru each course, using GRAPH COLOR to detect

if there is any cycle.

LC Graph#3: 210. Course Schedule II (topological sort).

• Go thru given pre-requisites list
to establish indegree[target]
table and preq_list<cond,
targets> (for a given course, all
other courses require/need it)

• Add all course with 0 in indegree
table into Q

• For each course in Q,
• dequeue it,
• Add it into result list
• decrease 1 in indegree table

for all other courses which
require it.

• Add any new courses with 0
indegree.

• Repeat until Q is empty

LC Graph#4: 417. Pacific Atlantic Water Flow.

• Use DFS find all cells (4 directions) which
have equal or higher HEIGHT

• Pacific starts top & left cells; Atlantic
starts bottom and right cells

• Use a vector<vector<int>> map to record
DFS result

• Check each cell result in map, if both PAC
and ATL set, add into result.

LC Graph#5: 200. Number of Islands.
• Search thru grid, find 1,
• Increment result
• Perform DFS to zero out all

neighbors(UP, BOTTOM, LEFT, RIGHT)
• Repeat above

LC Graph#6: 128. Longest Consecutive Sequence. Must be O(n)

• Add all numbers into a set
• Go thru each number, search

downward and upwards
consecutively

• Counter all of them
• Mark them checked in HashMap
• Return max counter

LC Graph#7: 261. Graph Valid Tree: i.e. all connected without loop.

• A graph is a valid tree: all
nodes are connected
without loop

• Establish adjancey list for
each node by going thru
edge list: by directions

• DFS using STACK: Starts with
first node, use a “seen” set
to track visited node.

• While add each neighbor
into stack, remove current
node from neighbor’s
neighbor list!

LC Graph#8: 323. Number of Connected Components in an Undirected Graph.

• Transform edges into G
• Use vector<bool> visited(n, false) to

track if node is visited by dfs
• Start dfs with node 0, every return of

dfs, increment res++;

LC Graph#9:
743: network delay time.

• Among NOT visited nodes, find node with mini time as node u
• Find all neighbors of u, name as v, min(time[v], time[u]+w),

make node u visited.
• Repeat above until all nodes are visited or TIME=INF(not

reachable)

time

visited

k

0

T

INFINF

F T F F FFF

LC Graph#10: 787: cheapest flights within K stops.
• Key points

LC# 1135. Connecting Cities With Minimum Cost
(Prims algorithm)

- Sort connection first
- Add first mini cost connection,

remove It from connections, add
nodes into set

- Find mini cost connection with only
one node in set until all nodes are in.

1

2

3

Misc: LRU cache, LC#146

Tree Height, Prime number and Inorder Traversal

From Excel
• 937s, 408s, 65h,242s, 49m, 1062m, 1092m,14m,12m,527h

• 752m(open lock, BFS), 56s, 80m, 88s, 238s, 16m, 41m, 128m, 35s,

• 69s, 34s, 153m, 162m(peak), 278m, 33m, 81m, 34m, 50m, 96m,

• 762h, 136s, 137m, 169s, 229s, 134m(gas), 179m, 402m, 55m, 45m,

• 31m,19s,21s,82s,83s,86s,206s,92s,61m,109m,

• 138m,141s,142m,143m,148m,538s,110s(balanced tree),102s,107s(Tree Level T),144s (Tree Preorder T),

• 104s,105m(binT from Pre & inroder),297m,98m,285m,510m,366m,156m(BT upDown),39m,207m(course
schedule),

• 51m,52m,90m,78m,47m,46m, 63s, 70s, 53s,152m(max product subarray),

• 72m,115h,120m(trangle min sum),139m(word break, recur with memo), 140h (word break II, backtrack),
97m,91m, 128m(int array LongConSeq), 23m,

• 232m, 155m,263m,264m(ugly number), 212h, 79h, 295h,84h, 438s,311m,288m,

• 981m(time based key store), 706m(Design HashMap)

Java: HashMap and HashSet
HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();

/* Add new entry */

map.put(1, 100); map. put(2, 200); if (map. size() == 2) System.out.println(“Cool”);

/* Get/check using key */

Integer val = map. get(1);

/* Loop thru key */ for (Integer key: map. keyset()) System.out.println(“key is “ + key.intValue());

/* Loop thru value */

for (Integer val: map. values()) System.out.println(“val is “ + val.intValue();

/* Iterator using Map.Entry*/

for (Map.Entry<Integer, Integer> ent: map.entrySet())

 System.out.println(“Key is “+ ent.getKey() + “, value is “ + ent.getValue());

HashSet<String> set = new HashSet<String>();
set.add(“xyz”); if (set. contains(“abc”)) System.out.println(“abc is not found”);

Java: Stack and Queue
Stack<Integer> st = new Stack<Integer>;

st.push(1); st.push(2); st.pop(); st.peek(); st.size();

while (!st.isEmpty()) System.out.println("pop: " + st.pop());

Queue<Integer> q = new LinkedList<Integer>();

q.add(1); q.add(2); q.add(3);

System.out.println("Q size is " + q.size());

while (!q.isEmpty()) System.out.println("Q remove : " + q.remove()); // remove() throw exp if empty

Integer val = q.poll(); //remove() method returns the head of the queue and removes it.

 // It returns null if the queue is empty.

Vector<Integer> v = new Vector<Integer>(); // thread safe

v.add(1); v.add(2); Integer val = v.get(1);

v.remove(0); v.remove(new Integer(2));

for (int i = 0; i < v.size(); i++) System.out.print(v.get(i) + " ");

ArrayList<Integer> al = new ArrayList <Integer>(); // not synchronized, faster

al.add(1); al.add(2); Integer val = al.get(1);

al.remove(0); al.remove(new Integer(2));

for (int i = 0; i < al.size(); i++) System.out.print(al.get(i) + " ");

Java: util.Arrays

• Java.util.Arrays.binarySearch(int[] arr, int key):

• Java.util.Arrays.copyOf(int[] arr, int newLen)

• Java.util.Arrays.sort(int[] arr) or
Java.util.Arrays.sort(int[] arr, Collections.reverseOrder())

•Class MyCmp implements Comparator<Student> {
 public int compare(Student a, Student b) { return a.id – b.id;} }

• Java.util.Arrays.sort(Student[] arr, new MyCmp())

Python: list (just like vector in C++ std)

• L1 = [1,2,3] L2 = list()

• L1.append(4) L2.append(“abc”)

• L1.insert(0, 100) # add 100 at the beginning (index, val)

• val1 = L1.pop(0) # remove first element and return

• Val2 = L1.pop() # pop last element, for this reason, list can be used as stack

• L1.remove(2) # remove the first occurrence of value 2

• L1.reverse()

• L1.sort()

• L1.count(2) // tell how many occurrence of value 2

• L1.index(3) 🡺 L1[3]// return value at given index

• Size = len(L1) # return how many elements in the list

Python dict: (unordered_map in C++ std)

•D1 = { 1:”abc”, 2:”xyz} D2 = dict()

•D1[100] = “odfag” D2[“xyz”] = 987 // add new element

• len(D1) # get the total elements in dictionary

•del D1[2] #remove element using key

•D1.pop(2) # another way to remove element using key

•2 in D1: # tell if key exists

• “abc” in D1.values(): # tell if value exists

• for k in D1: print(k); print(D1[k]) # iteratre thru all elements

Python queue & stack

from queue import Queue

q = Queue(maxsize = 3)

q.put('a’); q.put(‘b’); q.put(‘c’)

print(q.get())

q.empty()

q.full()

q.qsize()

from queue import LifoQueue

st = LifoQueue(maxsize = 3)

st.put('a’); st.put(‘b’); st.put(‘c’)

print(st.get())

st.empty()

st.full()

st.qsize()

