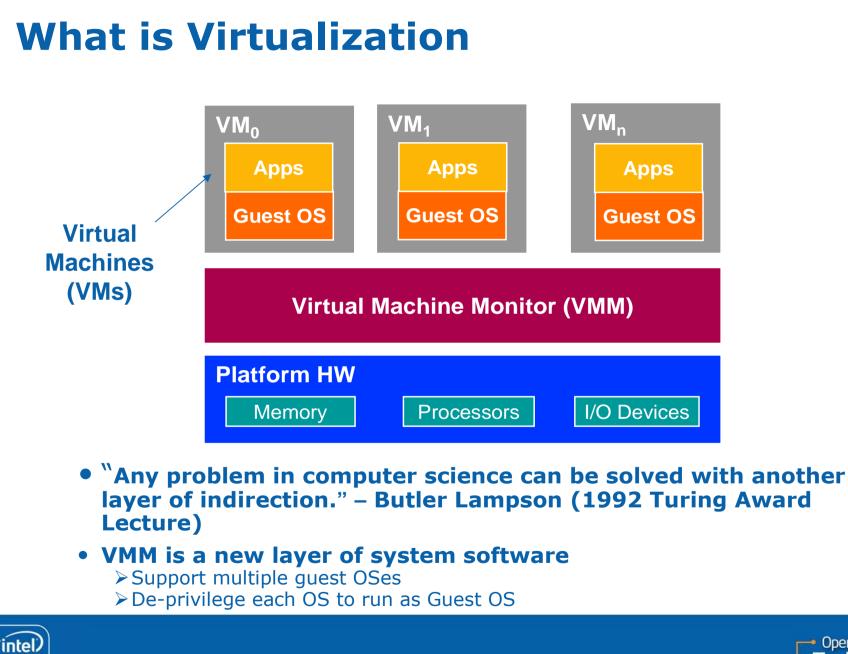


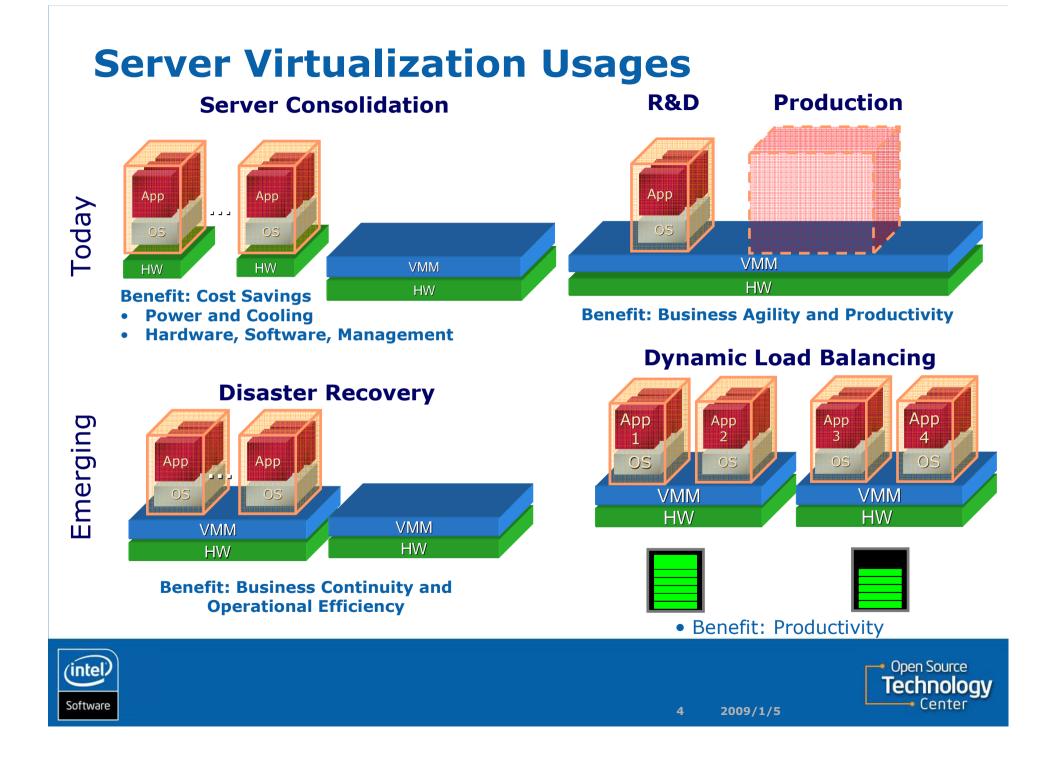
Intel Virtualization Technology Overview

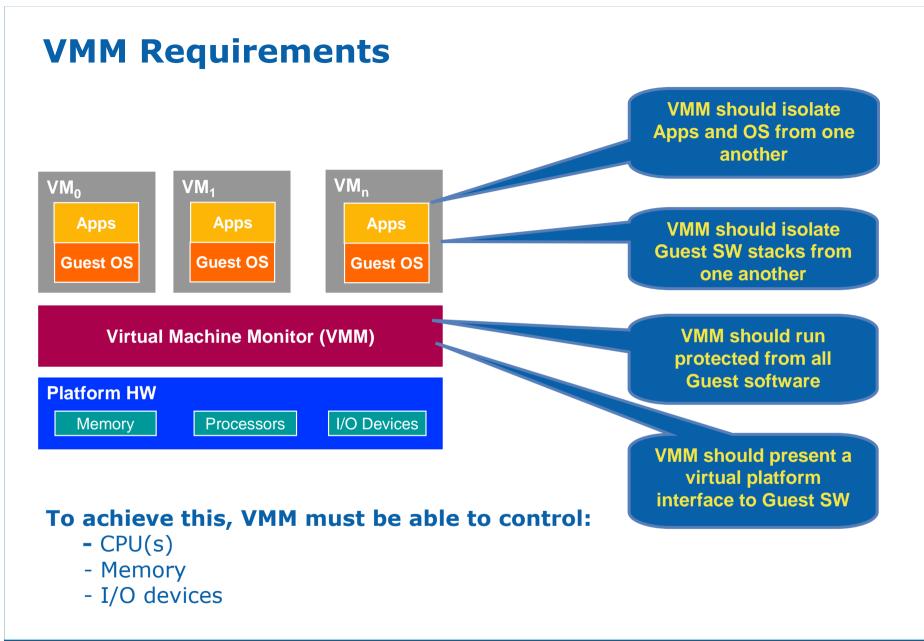
Yu Ke

SSG System Software Division


Agenda

- Virtualization Overview
- Intel Virtualization Technology



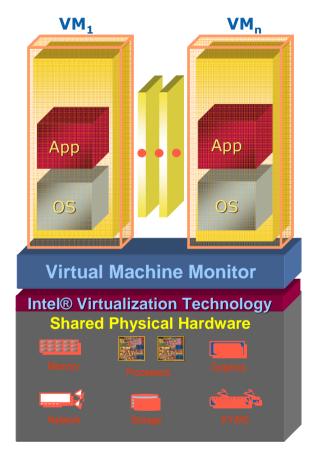

2009/1/5

Software

Agenda

Virtualization Overview

Intel Virtualization Technology


- CPU Virtualization VT-x
- Memory Virtualization: EPT, VPID
- I/O Virtualization: VT-d, VT-c (VMDq, SR-IOV)

6

Intel Virtualization Technology

Intel Virtualization Technology is a new hardware layer in Intel CPU/chipset/platform.

- Make VMM implementation simplified
- Improve VMM efficiency
- Support full virtualization to be able to run unmodified guest

"We are on record as saying that VT is the most significant change to PC architecture this decade"

Martin Reynolds, Gartner Senior Analyst – eWeek September 9, 2004

2009/1/5

7

Intel® Virtualization Technology Evolution

Vector 3: IO Device Focus				 Assists for IO st PCI IOV cor IOV VMDa: Multi-co. VMDa: Multi-co. VMDa: Multi-co. IA uning IO virtualization assists
Vector 2: Chipset Focus			Core support for IO robustness & device assig VT-d MA remapping	Interrupt filtering & remary VT- VT-d2 i to track PC: 516 IOV
Vector 1: Processor Focus		Close basic proce "vii VT-x holes" in intel® 64 & Itanium CPUs	Performance extension of VTi EPT, VT-x2 VPID, ECKK, APIC-V	Perf improvements for inter- intens VT-x3 faster VM boot
VMM Software Evolution	Software-only VMMs Binary translation Paravirtualization Device emulations	Simpler and more secure VMM through use of hardware VT support	Better IO/CPU perf and functionality via hardware-mediated access to memory	Richer IO-device functionality and IO resource sharing
	Yesterday: No HW Support	2005-2006 With CPU Support	2007-2008 With Chipset Suppo	ort & IO improvements
Software			8 2009/1/5	Open Source Technology Center

CPU Virtualization

Goal: present functional virtual CPU to Guest OS

• CPU from OS point of view:

➤A set of hardware resource: general register (EAX, EBX), FPU register, control register (EFLAG, EIP, CR3...)

- Support several privilege: Ring 0 ~ Ring 3
- ➢Run instruction with pre-defined semantic:
 - privileged instruction
 - non-privileged instruction

Support several address space: logical address, linear address, physical address (memory virtualization)

• VCPU (virtual CPU)

➤A scheduling entity, containing all the state for virtualized CPU

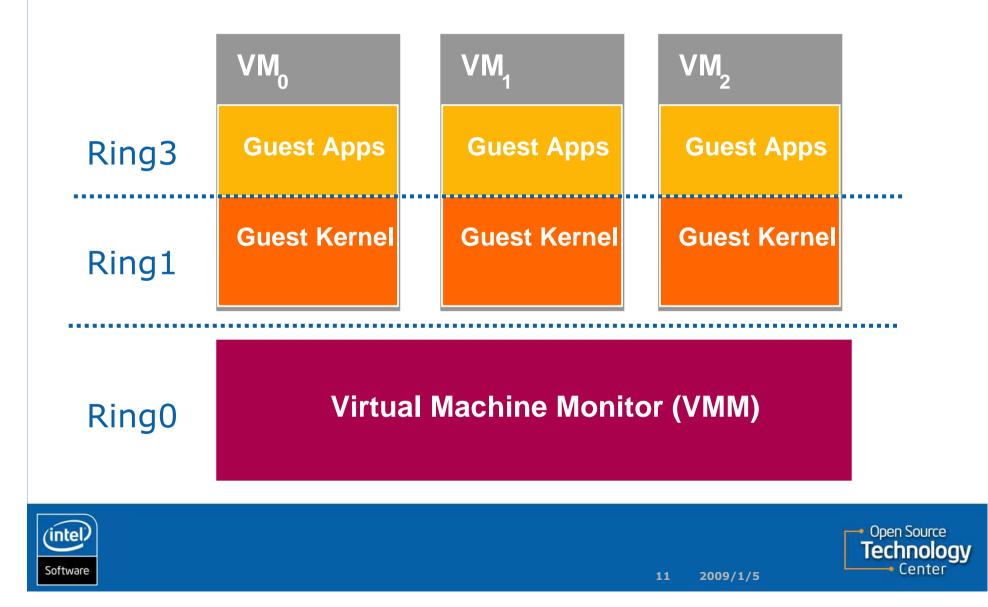
• Key to CPU virtualization: Trap and Emulation

Non-privileged instruction: untrap and run in nativePrivileged instruction: Trap and Emulation

CPU Virtualization (Cont)

• Example:

≻STI


≻CLI

0 2009/1/5

Traditional IA32 CPU Virtualization: Ring Compression

IA32 Processor Virtualization Holes

• Some instructions are hard to be virtualized

• e.g. pushf/popf

pushf	//save EFLAG to stack
cli	<pre>//disable interrupt, i.e. clear EFLAG.IF</pre>
•••••	
popf	//restore EFLAG from stack, restore EFLAG.IF

• 17 similar instructions

Addressing IA-32 "Virtualization Holes"

• Method 1: Paravirtualization techniques

Modify guest OS to work around virtualization holes
 Typically limited to OSes that can be modified (e.g., Linux)

• Method 2: Binary translation or patching

Modify guest OS binaries "on-the-fly"
 Extends range of supported OS's but introduces new complexities
 E.g., consider self-modifying code, translation caching, etc.
 Certain forms of excessive trapping remain

Goal for Hardware-assisted Virtualization

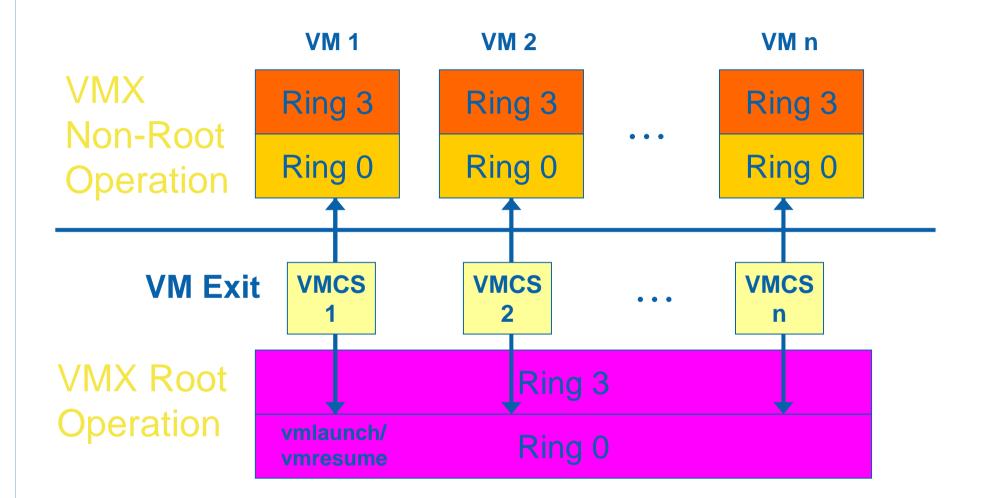
Simplify VMM software by closing virtualization holes by design
 Eliminate need for paravirtualization and binary translation

13 2009/1/5

VT-x: Key Features

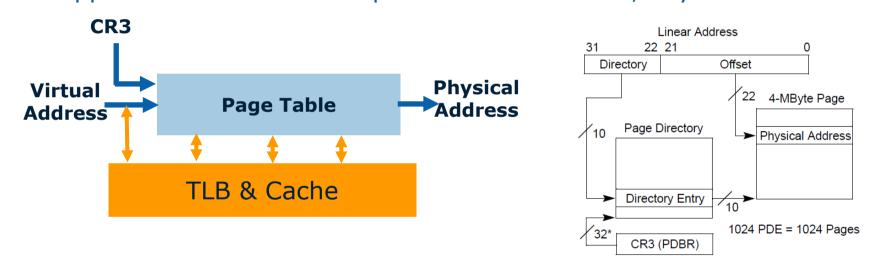
New mode of operation for guest

Allows VMM control of guest operation
 Need not use segmentation to control guest
 Guest can run at its intended ring


New structure controls CPU operation

VMCS: virtual-machine control structure
Resides in physical-address space
Need not be in guest's linear-address space

VT-x Operation


15 2009/1/5

Memory Virtualization

• Goal: Present Virtual Memory to Guest OS

Memory from OS point of view

A set of memory unit (e.g. 2G memory)
 Support different address space: Virtual Address, Physical Address

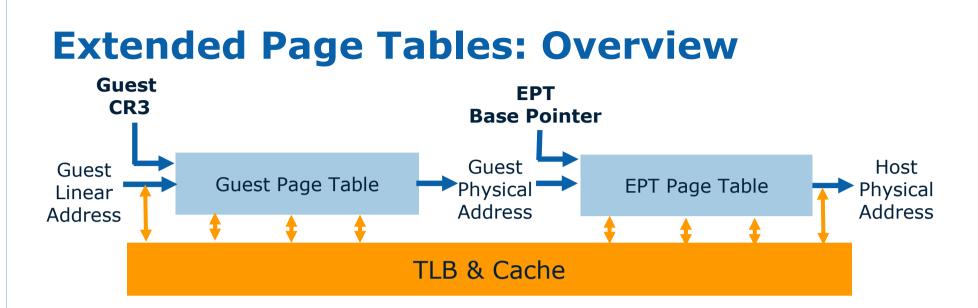
Memory Virtualization

- Guest Virtual Address
- ➤Guest Physical Address
- Machine Physical Address (Host Physical Address)

Extended Page Tables: Motivation

• VMM needs to retain control of physical-address space

With Intel® 64, paging is main mechanism for protecting that space
 Intel® VT provides hooks for page-table virtualization...


>... but page-table virtualization in software is a major source of overhead

• Extended Page Tables (EPT)

A new CPU mechanism for remapping guest-physical memory references
 Allows guest to retain control of legacy Intel® 64 paging
 Reduces frequency of VM exits to VMM

- Guest can have full control over page tables / events
 ≻CR3, CR0, CR4 paging bits, INVLPG, page fault
- VMM controls Extended Page Tables
- CPU uses both tables
- EPT (optionally) activated on VM entry
 When EPT active, EPT base pointer (loaded on VM entry from VMCS) points to extended page tables
 EPT deactivated on VM exit

Extended Page Tables: Performance

• Estimated EPT benefit is very dependent on workload

Typical benefit estimated up to 20%¹
 Outliers exist (e.g., forkwait, Cygwin gcc, > 40%)

Benefit increases with number of virtual CPUs (relative to MP page table virtualization algorithm)

• Secondary benefits of EPT:

>No need for complex page table virtualization algorithm

Reduced memory footprint compared with shadow page-table algorithms

- Shadow page tables required for each guest user process
- Single EPT supports entire VM

EPT improves memory virtualization performance

VPID: Motivation

- First generation of Intel[®] VT forces flush of Translation Lookaside Buffer (TLB) on each VMX transition
- Performance loss on all VM exits
- Performance loss on most VM entries
 - Most of the time, the VMM has not modified the guest page tables and does not require TLB flushing to occur
 - Exceptions include emulating MOV CR3, MOV CR4, INVLPG
 - Better VMM software control of TLB flushes is beneficial

VPID: New Support for Software Control of TLB

- VPID activated if new "enable VPID" control bit is set in VMCS
- New 16-bit virtual-processor-ID field (VPID) field in VMCS

VMM allocates unique value for each guest OSVMM uses VPID of 0x0000, no guest can have this VPID

- Cached linear translations are tagged with VPID value
- No flush of TLBs on VM entry or VM exit if VPID active

TLB Management by the VMM: INVVPID

• New instruction to allow VMM to flush guest mappings

• Three operands:

The <u>flush extent</u> (see below)
 The <u>16-bit VPID</u> indicating the VPID context to be flushed
 The <u>64-bit guest-linear address</u> to be flushed

• Flush extent operand chooses:

- Address-specific: invalidation of translations associated with VPID and address operands
- Context-wide: invalidation of all translations associated with VPID operand
- Context-wide preserving global translations: invalidation of all non-global translations associated with VPID operand
- ><u>All-context</u>: invalidation of all translations associated with all VPID values

• Allows VMM to emulate Intel® 64 paging faithfully

VPID Performance

• VPID benefit is very dependent on workload and memory virtualization mechanism

• Without EPT:

- Most stressful of CPU-intensive workloads (e.g., gzip) show only small improvements with VPID
- > Process and memory-intensive workloads gain an estimated 1.5% 2%¹
- ➢ Worst-case synthetic benchmarks gain an estimated 3%-4%¹

• With EPT:

- >VM-exit frequency decreases but the cost of TLB fills increases
- >VPIDs required to make EPT effective under stressful loads

For process/memory-intensive workloads gain an estimated >2%¹
 Worst-case synthetic benchmarks gain an estimated 10%-15%¹

VPID improves TLB performance

with small VMM development effort

I/O Virtualization

Present virtual I/O device to Guest OS

• I/O device from OS point of view

A set of resource: I/O port, MMIO, InterruptCan execute I/O command with predefined semantic

• Key to I/O Virtualization

➢Base on CPU virtualization

Software Approaches to I/O Virtualization

• Device Emulation

Virtualization software emulates real hardware device
 VMs run same driver for the emulated hardware device
 Good legacy software compatibility

However emulation overheads can limit performance

• I/O Para-virtualization

Uses abstract interfaces and protocols for I/O services
 VMs run virtualization-aware I/O stacks and drivers
 Offers improved performance over emulation
 Requires new I/O stack/driver in guest OSs

Software approaches offer I/O sharing with H/W transparency, at a performance cost

25 2009/1/5

I/O Virtualization: Direct Assigned I/O

Directly assigned I/O device to Guest

➢ Guest OS access I/O device resource directly

High performance and low CPU utilization

• Problem: DMA address mismatch

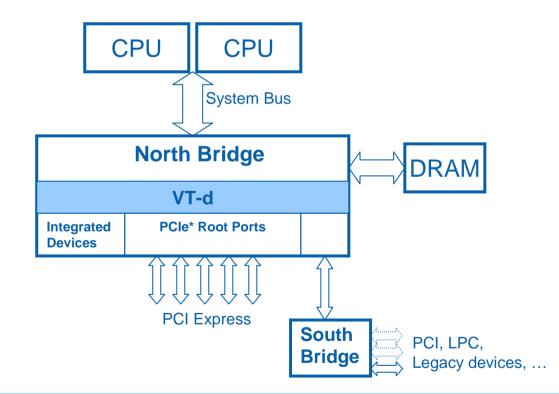
➤ Guest set guest physical address

DMA hardware only accept machine physical address

• Solution: DMA Remapping (a.k.a IOMMU)

> I/O page table is introduced

DMA engineer will translate guest physical address to host physical address according to I/O page table

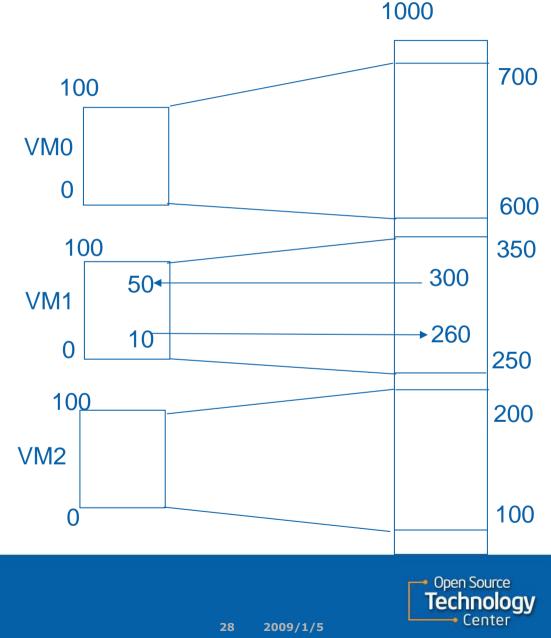


VT-d Overview

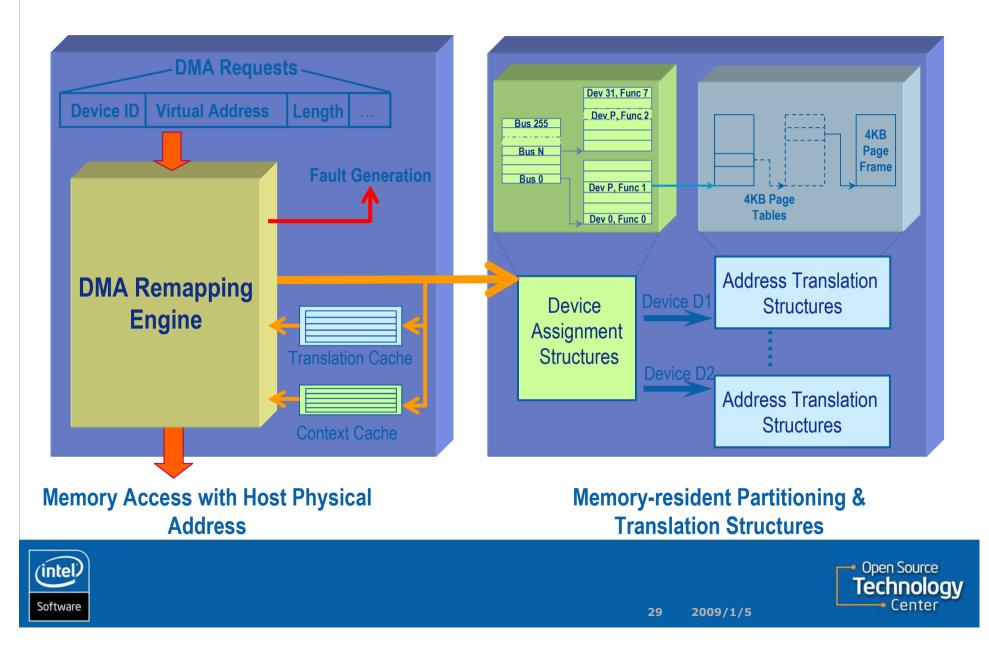
• VT-d provides infrastructure for I/O virtualization

- Defines architecture for DMA remapping
- Common architecture across IA platforms
- >Will be supported broadly across Intel[®] chipsets

How VT-d works?


➢ GPA (Guest Physical Address)

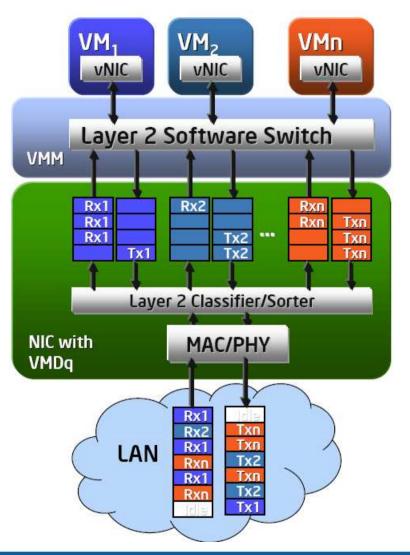
- But mapped to a different address in the system memory
 > HPA (Host Physical Address)
- VT-d does the address mapping between GPA and HPA


intel

Software

• Catches any DMA attempt to cross VM memory boundary

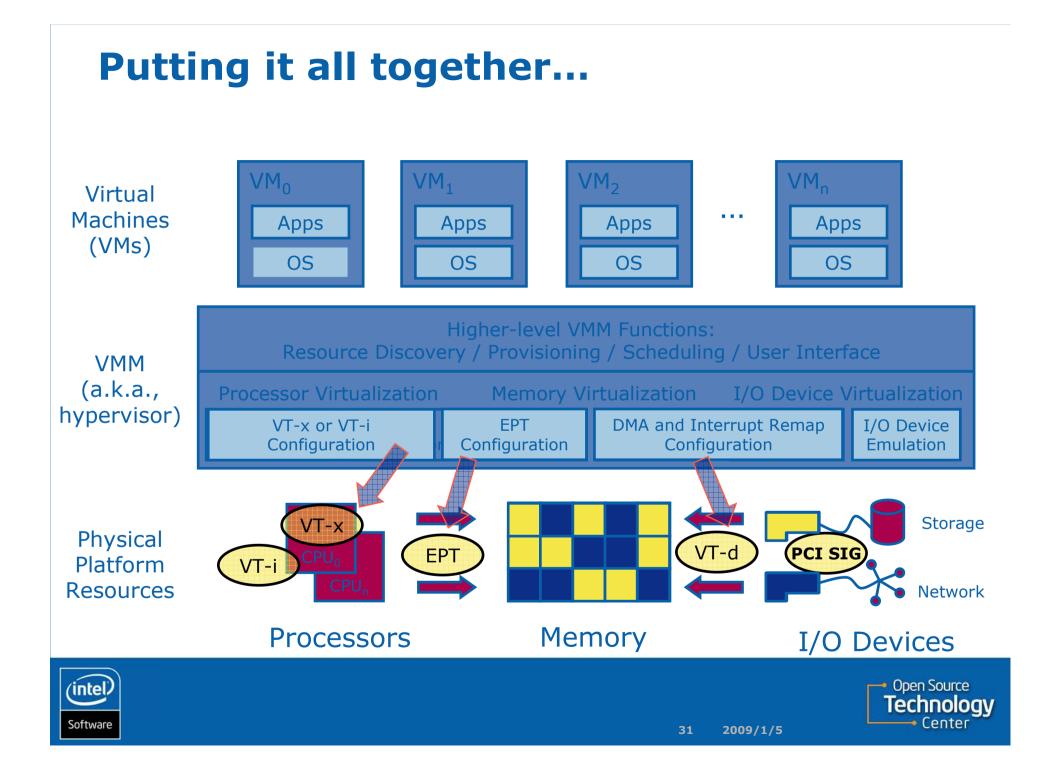
DMA Remapping: Hardware Overview


Intel VT For Connectivity: VMDq

Network Interface Card with Virtual Machine Device Queues (VMDq)

- >Multiple Send/Receive Queues
- Pre-sort Incoming Packets

• Benefits


Reduce CPU UtilizationHigher throughput

30 2009/1/5

Virtualization Technology Forecast

More usage model

Client Virtualization (Desktop)
 Mobile Virtualization (Cell phone)
 Cloud Computing

More Virtualization Software

VMWareMS Hyper-VXen, KVM

• Hardware

CPU/Memory Virtualization: higher performance
 I/O Virtualization: SR-IOV, Graphics Virtualization (3D)

Summary

- Exponential grows in virtualization solutions.
- Hardware-assisted Virtualization Technology can make VMM more efficient, simplified & secure.
- A lot of un-cultivated areas in virtualization, a lot of opportunity.

Resource

- Intel[®] VT Web Site: <u>http://www.intel.com/technology/virtualization/</u>
- Open Source Xen <u>http://www.xen.org/</u>
- Open Source KVM (Kernel-based Virtual Machine) http://kvm.qumranet.com/

5 2009/1/5